

2025 年度 入学試験問題

解答

人文学部(心理人間、日本文化)【2月10日】 理工学部(ソフトウェアエ学、データサイエンス、電子情報工学、機械システム工学)【2月10日】

記述式の解答については、標準的な解答例を公表しています。 解答例以外の解答に点数を与えている場合もあります。

【現代文】

問題番号	設問番号	正解	問題番号	設問番号	正解
	A 1	1		A 21	1
	A 2	ウ		A 22	オ
	A 3 ウ		A 23	ア	
	A 4	エ		A 24	エ
	A 5	エ		A 25	ウ
	A 6	ア		A 26	ウ
_	A 7	オ	三	A 27	ウ
	A 8	オ	_ =	A 28	エ
	A 9	ア		A 29	I
	A 10	オ		A 30	1
	A 11	1		B 6	軒
	B 1	所得の金(額)		B 7	昔日
	B 2	かれる金(額)		В8	X 聖
	B 3	別所得金(額)		D 0	Y 俗
	A 12	ウ			
	A 13	1			
	A 14	1			
	A 15	エ			
	A 16	ア			
=	A 17	オ			
	A 18	ア			
	A 19	エ			
	A 20	ウ			
	B 4	やゆ			
	B 5	果敢			

【古文】

問題番号	設問番号	正解
	A 49	エ
	A 50	ウ
	A 51	イ
	A 52	イ
四四	A 53	イ
	A 54	ウ
	A 55	ウ
	A 56	イ
	A 57	エ

国語 人文学部(心理人間、日本文化)

【漢文】

問題番号	設問番号	正解
	A 65	ウ
	A 66	イ
	A 67	ア
	A 68	エ
五	A 69	H
	A 70	ア
	A 71	ウ
	A 72	1
	A 73	イ

「物理 I 】

理科 理工学部(ソフトウェア工学、データサイエンス、 電子情報工学、機械システム工学)

問 1

(1) **P** (b)

(2) 波長 2L 音速 2fL

 $(3) \ \ \textbf{1} \ \ 3L \quad \ \ \, \boldsymbol{\dot{7}} \ \ \frac{1}{2}L \quad \ \, \textbf{I} \ \ \frac{3}{2}L \quad \ \, \boldsymbol{\dot{7}} \ \ \frac{5}{2}L$

(4) \uparrow \uparrow

(5) ケ SP1

問2

 $(1) \quad \frac{nh}{mv} = 2\pi r$

 $(2) \quad m\frac{v^2}{r} = \frac{ke^2}{r^2}$

 $(3) \quad \frac{n^2h^2}{4\pi^2mke^2}$

 $(4) \quad -\frac{2\pi^2 m k^2 e^4}{n^2 h^2}$

答 10 mA

 $x_2 : 16 \text{ mA}$

 $y_2 : 2.0 \text{ mA}$

 z_2 : 18 mA

答 6.0 mA

答 4.8×10⁻³ W

答 12.0 mA

問1 斜面に沿った方向と垂直な方向の力のつりあいより、

答 $T = mg\sin\theta$ $N = mg\cos\theta$

問2 加速度の大きさを α とする。

運動方程式 $m\alpha = mg\sin\theta$ ∴ $\alpha = g\sin\theta$

等加速度直線運動の公式 $\frac{1}{2}\alpha t^2 = L$: $t = \sqrt{\frac{2L}{g\sin\theta}}$

答 加速度の大きさ $g \sin \theta$

問3 Pの加速度の大きさを β , Q が受ける垂直抗力の大きさを N とする。

P $K \supset V \subset M\beta = N \sin \theta$

Q について $m\beta\sin\theta + N = mg\cos\theta$

答 向き 右向き 加速度の大きさ $\frac{mg\cos\theta\sin\theta}{M+m\sin^2\!\theta}$

問4 求める加速度の大きさをδとする。運動方程式より、

 $m\delta = mg\sin\theta + m\beta\cos\theta$

 $\beta = \frac{mg\cos\theta\sin\theta}{M + m\sin^2\theta}$ を代入する。

 $(M+m)g\sin\theta$ $M + m\sin^2\theta$

問5 求める加速度の大きさを b とする。運動方程式より、

 $mb = ma\sin\theta - ma\cos\theta$

答 $g\sin\theta - a\cos\theta$

問6 題意より、 $g\sin\theta - a_0\cos\theta = 0$

答 $g tan \theta$

理科 理工学部(ソフトウェア工学、データサイエンス、 電子情報工学、機械システム工学)

【化学Ⅱ】

【物理Ⅱ】

問1 キルヒホッフの法則より、

問2 キルヒホッフの法則より、

 $z_2 = x_2 + y_2 = 0.018$

問4 キルヒホッフの法則より、 0.2j+w=2.0

w = 0.80 V j = 6.0 mA

問5 $P = (6.0 \times 10^{-3}) \times 0.80 = 4.8 \times 10^{-3}$

この式と問題のグラフとの交点より,

問6 R_1 の電流をIとする。キルヒホッフの法則より、

グラフとの交点より、w=1.0 V j=12 mA

 $200x_2+100(x_2+y_2)=5.0$

 $100v_2 + 100(x_2 + v_2) = 2.0$

(200+100)I=5.0-2.0 : I=0.010

 $x_2 = 0.016$

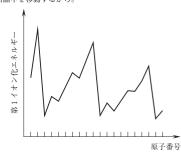
問3 ア p イ n ウ 正孔(ホール) エ 電子 オ 整流

200I+100j+w=5.0 100(j-I)+100j+w=2.0 I を消去して 500j+3w=9.0

 $v_2 = 0.0020$

塩素分子:CI:CI: ★分子 H:O:H

問2 イオン結合


問3 共有結合

問4 展性・延性を示す理由

力を加えて原子の位置がずれても自由電子が移動できるため、結合が保たれるから。 電気伝導性・熱伝導性にすぐれる理由

自由電子が結晶中を移動するから。

問 5

問6 フッ素、酸素、窒素のような電気陰性度の大きい原子が水素原子と共有結合すると、特 に大きな結合の極性が生じる。そのため、正に帯電した水素原子とその水素原子と直接 結合していない隣接するフッ素、酸素、窒素の原子との間に強い静電気的な引力がはた らくから。

理科 理工学部(ソフトウェア工学、データサイエンス、 【化学I】 電子情報工学、機械システム工学)

(1) ア 両性元素 ク 減少 ケ 正極 コ 負極

(2) 1 (-)Pb | H₂SO₄aq | PbO₂ (+)

(3) ウ PbO₂

(4) I $PbO_2 + SO_4^{2-} + 4H^+ + 2e^- \longrightarrow PbSO_4 + 2H_2O$ オ Pb + SO_4^{2-} \longrightarrow Pb SO_4 + $2e^ \forall$ 2H₂O \longrightarrow O₂ + 4H⁺ + 4e⁻

 $(5) \quad \textbf{$\rlap/$D} \quad \textbf{Pb} \ + \ \textbf{PbO}_2 \ + \ 2\textbf{H}_2\textbf{SO}_4 \longrightarrow \ 2\textbf{PbSO}_4 \ + \ 2\textbf{H}_2\textbf{O}$

(6) キ 12.8 シ 336

問 2

(1) C₅H₁₉O

 $(2) \quad \text{CH}_3 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 \\ \qquad \text{CH}_3 - \text{CH}_2 - \text{CH}_2 - \text{CH} - \text{CH}_3 \\$ ÓН ÓН CH₃-CH₂-CH-CH₂-CH₃ ÓН

(3) CH₃-CH₂-CH₂-CH₂-CH₂

(4) 1-ペンタノール

(5) $2CH_3-(CH_2)_4-OH + 2Na \longrightarrow 2CH_3-(CH_2)_4-ONa + H_2$

(6) 酸化銅(I)

【化学Ⅱ】

問1 金属の表面に緻密な酸化物の被膜が生じ、内部が保護された状態。

問2 (a), (b)

問3 鉄鉱石に含まれる SiO_2 などの不純物をスラグとして取り除くため。

間 4 $1 \mod \mathcal{O}$ Fe₂O₃ から $2 \mod \mathcal{O}$ Fe が得られるので、求める赤鉄鉱の質量をx [kg] とする と、Fe₂O₃=160.0 より、

$$\frac{x \times \frac{8.0 \times 10}{100}}{160.0} \times 2 = \frac{2.5}{56.0}$$
$$x = 4.46 \text{(kg)}$$

答 4.5 kg

問 5 炭素

【英語】

問6 ステンレス鋼に含まれる Cr の酸化物の被膜が、内部を保護するから。

問7 イオン化傾向が Zn>Fe のため、傷がついて Fe が露出しても、Zn が Fe よりも優先的 に酸化されるから。

【英語】

問題 番号	設問番号	正解	問題 番号	設問番号	正解	問題 番号	設問番号	正解		
	1	В		28	D		53	С		
	2	В]	29	D		54	D		
	3	С	30 B 31 A		55	Α				
	4	С		31	Α		56	D		
	5	D]	32	В	ΑV	57	Α		
	6	В]	33	D		58	В		
	7	С		34	С		59	С		
	8	D	АШ	35	Α		60	В		
	9	Α]	36	В		61	В		
ΑI	10	С		37	Α		62	D		
AI	11	Α		38	В		63	В		
	12	В		39	В	A VI	IV A	AVI	64	D
	13	D		40	С					65
	14	Α		41	Α		66	Α		
	15	В		42	Α					
	16	В		43	В					
	17	С		44	D					
	18	В		45	D					
	19	С		46	Α	,				
	20	D	AN	47	С					
	21	С	AIV	48	В					
	22	В		49	Α					
	23	В		50	С		\	\		
ΑI	24	D		51	D					
	25	С		52	D					
	26	Α						\		
	27	С								

外国語 理工学部(ソフトウェア工学、データサイエンス、 電子情報工学、機械システム工学)

!)

地理歴史・数学 人文学部(心理人間、日本文化)

問題 番号	設問 番号	正解	問題 番号	設問 番号	正解	問題 番号	設問 番号	正解
	1	В		28	D		53	D
	2	В		29	D		54	В
	3	C		30 B A	ΑV	55	D	
	4	С		31	Α		56	В
	5	D		32	В		57	Α
	6	В		33	D	Λ		
	7	С		34	С	\		
	8	D	ΑII	35	Α			
	9	Α		36	В			
ΑΙ	10	С		37	Α			
AI	11	Α		38	В			
	12	В		39	В	\		
	13	D		40	С		\	
	14	Α		41	Α		\	
	15	В		42	Α		\	
	16	В		43	В		\	
	17	С		44	D		\	
	18	В		45	D		\	
	19	С		46	Α		\	.
	20	D	AV	47	С			\
	21	С	AIV	48	В			\
	22	В		49	Α			\
	23	В		50	С			\
ΑI	24	D		51	D			\
	25	С		52	D			\
	26	Α						\
	27	С						\

【日本史】

Δ

A					
問題番号	設問番号	正解	問題番号	設問番号	正解
	(1) ウ			(14)	イ
	(2)	エ		(15)	ア
(—)	(3)	ウ		(16)	ア
(—)	(4)	ア	(三)	(17)	ウ
	(5)	エ		(18)	ア
	(6)	ア		(19)	ウ
	(7)	イ		(20)	ウ
	(8)	エ		(21)	ア
	(9)	ア		(22)	ア
(二)	(10)	オ		(23)	ウ
	(11)	イ	(四)	(24)	ア
	(12)	ア	(14)	(25)	エ
	(13)	エ		(26)	1
				(27)	1
				(28)	オ

В

- (一)(1) A:山口 C:博多 (2) 応永の乱 (3) 雪舟
 - (4) 分国法 (5) 石見銀山(大森銀山)
 - (6) 応仁の乱により、公家らが京都を離れたから。(21字)
- (二) (7) 冷戦 (8) 全面 (9) 9 (九)
 - (10) 朝鮮戦争 (11) 吉田茂
 - (12) 米軍の日本駐留を認めることで再軍備の負担を軽減 し、経済復興に注力するため、日米安全保障条約を 締結した。(51字)

【世界史】

問題番号	設問番号	正解	問題番号	設問番号	正解
	(1)	ア		(31)	イ
	(2)	ウ		(32)	ウ
	(3)	1		(33)	ア
	(4)	ア		(34)	イ
I	(5)	アウ	N N	(35)	イ
1	(6)	ウ	10	(36)	1
	(7)	イ ウ		(37)	1
	(8)	ウ		(38)	ウ
	(9)	イ ウ		(39)	1
	(10)	ウ		(40)	オ
	(11)	ア ウ		(41)	ウ
	(12)	ウ		(42)	エ
	(13)	イウ	v	(43)	エ
	(14)	ウ		(44)	イ
п	(15)	ア		(45)	ア
_ <u> </u>	(16)	ア		(46)	エ
	(17)	ウ		(47)	ウ
	(18)	イ		(48)	イ
	(19)	ウ		(49)	1
	(20)	エ		(50)	1
	(21)	ウ			
	(22)	ウ			
	(23)	エ			
	(24)	エ			
ш	(25)	ア			
ш	(26)	ウ			
	(27)	エ		`	
	(28)	ア			
	(29)	イ			
	(30)	イ			

【数学】

Ι	(1)	ア	(x-2)(x+1)(x-1)	1	$6x^2 + 5x - 10$
	(2)	ウ	(-5, -3)	I	$\sqrt{2}$
	(3)	オ	$\frac{2}{3}\pi < x < \pi$	カ	$\frac{\pi}{2} < x < \pi$
	(4)	+	$t \ge 2$	ク	8

П

(1) 直線 PQ、すなわちℓはOを通らないから、OP=OQ=1である二等辺三角形 OPQができていて、Mは辺PQの中点であるから、OM⊥PQ。

よって、線分 OM の長さは、O と ℓ の 距離であり、

$$OM = \frac{|0+0-a|}{\sqrt{1^2+1^2}} = \frac{\sqrt{2}a}{2}.$$
 ···(答)

(2) 直角三角形 OPM に着目して,

$$PM = \sqrt{OP^2 - OM^2}$$
$$= \sqrt{1 - \frac{a^2}{2}}. \qquad \cdots(答)$$

(3) MPを半径とする円を底面とし、高さが OM である円錐ができるから、

$$V = \frac{1}{3} \cdot \pi \left(1 - \frac{a^2}{2}\right) \cdot \frac{a}{\sqrt{2}}$$
$$= \frac{\sqrt{2}}{12} \pi a (2 - a^2). \qquad \cdots (\stackrel{\text{\tiny (4)}}{\rightleftharpoons})$$

(4) $\frac{dV}{da} = \frac{\sqrt{2}}{12}\pi(2-3a^2)$ であるから、V の増減は次のようになる。

a	(0)		$\frac{\sqrt{6}}{3}$		$(\sqrt{2})$
$\frac{dV}{da}$		+	0	_	
V		7	$\frac{2\sqrt{3}}{27}\pi$	>	

…(答)

表より、Vの最大値は

$$\frac{2\sqrt{3}}{27}\pi$$
. ···(答)

そのときの *a* の値は

$$a = \frac{\sqrt{6}}{2}$$
. ··· (答)

数5 理工学部(ソフトウェア工学、データサイエンス、

Ι	(1)	ア	$0 \le \alpha \le 1$	1	$-1 \le a \le 4$
	(2)	ゥ	$t+\frac{5}{t}$	ı	2√5
	(3)	オ	$\frac{1}{2^n}$	カ	$1-2n-\frac{1}{2^n}$
	(4)	+	557	ク	490

II

【数学】

 $(1) \quad g(x) = f'(x)$

 $= (-x^2 + x)'e^x + (-x^2 + x)(e^x)'$ $= (-2x + 1 - x^2 + x)e^x$

 $=(-x^2-x+1)e^x. \qquad \cdots (8)$

(2) $f(x)-g(x)=(2x-1)e^x$.

 $e^x > 0$ であるから、f(x) = g(x) となるとき、

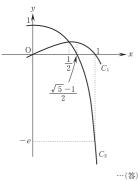
$$2x-1=0.$$

$$x=\frac{1}{2}.$$
 ···(答

(3) $f'(x) = g(x) = -(x^2 + x - 1)e^x$ より、 f(x) の増減は次のようになる.

x	0		$\frac{\sqrt{5}-1}{2}$		1
f'(x)		+	0	_	
f(x)	0	7		>	0
					(答)

また.


$$g'(x) = (-2x-1)e^{x} + (-x^{2}-x+1)e^{x}$$
$$= (-x^{2}-3x)e^{x}$$

であり、0 < x < 1 において g'(x) < 0 であるから、

電子情報工学、機械システム工学)

g(x) $(0 \le x \le 1)$ は単調減少.…(答) (2)より.y = f(x).y = g(x) の共有点のx座標は $\frac{1}{2}$ であることにも注意し

て、2曲線の概形は次のようになる。

(4) $\int (f(x) - g(x)) dx$

$$= \int (2x-1)e^x dx$$

 $= \int (2x-1)(e^x)' dx$ $= (2x-1)e^x - \int (2x-1)'e^x dx$ $= (2x-3)e^x + C \quad (C は積分定数)$ であることに注意する. $(3)O ヺ ラ 7 \downarrow 1),$ $S = \int_0^1 |f(x) - g(x)| dx$ $= -\int_0^{\frac{1}{2}} (f(x) - g(x)) dx$ $+ \int_{\frac{1}{2}}^1 (f(x) - g(x)) dx$ $= -\left[(2x-3)e^x \right]_0^{\frac{1}{2}} + \left[(2x-3)e^x \right]_{\frac{1}{2}}^1$ $= -(-2\sqrt{e} + 3) + (-e + 2\sqrt{e})$ $= -e + 4\sqrt{e} - 3. \qquad \cdots (答)$

 ${\rm I\hspace{-.1em}I\hspace{-.1em}I}$

(1) $\overrightarrow{b} \cdot \overrightarrow{c} = |\overrightarrow{b}||\overrightarrow{c}|\cos 60^{\circ} = \frac{1}{2}$. ···(答)

(2) $\overrightarrow{OF} = \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ (2)

(3) $\overrightarrow{OP} = (1-t)\overrightarrow{OA} + t\overrightarrow{OF}$

 $=\overrightarrow{a}+t\overrightarrow{b}+t\overrightarrow{c}$. \cdots (答)

(4) Q は直線 OP 上にあるから、実数 k を 用いて。

 $\overrightarrow{\mathrm{OQ}} = k\overrightarrow{\mathrm{OP}} = k\overrightarrow{a} + tk\overrightarrow{b} + tk\overrightarrow{c}$ と表され、Q は平面 ABC 上より、

k+tk+tk=1.

これより,
$$k = \frac{1}{2t+1}$$
 となるから,

$$\overrightarrow{OQ} = \frac{\overrightarrow{a} + t\overrightarrow{b} + t\overrightarrow{c}}{2t+1}$$
. ...(\(\frac{\pi}{2}\))

(5) $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{a} \cdot \overrightarrow{c} = 0$ に注意する.

 $|\overrightarrow{\mathrm{OQ}}|^2$ を最小にするtを求めればよい.

 $|\overrightarrow{OQ}|^2$

 $=\overline{OQ}\cdot\overline{OQ}$

 $=\frac{|\overrightarrow{a}|^2+t^2|\overrightarrow{b}|^2+t^2|\overrightarrow{c}|^2+2t^2\overrightarrow{b}\cdot\overrightarrow{c}}{(2t+1)^2}$

 $=\frac{3t^2+1}{(2t+1)^2}$.

 $f'(t) = \frac{(6t)(2t+1)^2 - (3t^2+1) \cdot 4(2t+1)}{(2t+1)^4}$

 $=\frac{6t(2t+1)-4(3t^2+1)}{(2t+1)^3}$

 $=\frac{6t-4}{(2t+1)^3}$

となるから、f(t) の増減は次のようになる。

t	(0)		$\frac{2}{3}$		(1)
f'(t)		_	0	+	
f(t)				7	

表より、 $|\overrightarrow{OQ}|$ を最小にする t は、

$$t = \frac{2}{3}$$
. ··· (答)