

2025 年度 入学試験問題

解答

全学統一入試【2月7日】

記述式の解答については、標準的な解答例を公表しています。 解答例以外の解答に点数を与えている場合もあります。

【文系型/日本史】

問題番号	設問番号	正解	問題番号	設問番号	正解
	(1)	ウ		(29)	1
	(2)	1		(30)	1
()	(3)	ア		(31)	1
(—)	(4)	1	(五)	(32)	ウ
	(5)	ア		(33)	ウ
	(6)	オ		(34)	1
	(7)	エ		(35)	ウ
	(8)	イ		(36)	ソ
	(9)	ア		(37)	コ
(二)	(10)	1		(38)	١
	(11)	1	(六)	(39)	ヌ
	(12)	ア		(40)	カ
	(13)	ア		(41)	ス シ
	(14)	1		(42)	シ
	(15)	ウ			
	(16)	ウ			
(三)	(17)	ウ			
	(18)	ア			
	(19)	エ	`		
	(20)	イ			
	(21)	エ			
	(22)	オ			
	(23)	エ			\
(四)	(24)	ウ			
(12)	(25)	ウ			
	(26)	ウ			
	(27)	エ			
	(28)	ウ			

【文系型/世界史】

問題番号	設問番号	正解	問題番号	設問番号	正解
	(1)	ア		(31)	エ
	(2)	1		(32)	イ
	(3)	ウウ		(33)	ウ
	(4)	ウ		(34)	1
I	(5)	ア	N	(35)	ア
1	(6)	ア ウ ウ イ	10	(36)	エ
	(7)	ウ		(37)	ウ エ エ
	(8)	イ		(38)	エ
	(9)	ア		(39)	エ
	(10)	1		(40)	エ
	(11)	オ ウ		(41)	ウ エ
	(12)	ウ	v	(42)	エ
	(13)	オ ウ ウ ア		(43)	1
	(14)	ウ		(44)	ア
I	(15)	ウ		(45)	オ
ш ш	(16)	ア	_ v	(46)	1
	(17)	ウ		(47)	エ
	(18)	ア		(48)	ウ
	(19)	エ		(49)	ウ
	(20)	エ ウ ウ		(50)	エ
	(21)	ウ			
	(22)	ウ			
	(23)	エ			
	(24)	エイ			
ш	(25)	1			
	(26)	イ			
	(27)	エイ		`	
	(28)	1			
	(29)	アイ			
	(30)	1			

地理歴史・数学 全学統一入試

【文系型/数学】

I (1)	ア	62	1	$-3+\sqrt{15}$
(2)	ウ	$-\frac{13}{19}$	ı	4√3
(3)	オ	$a \leq -1, 1 \leq a$	カ	-1
(4)	+	1260	ク	2100

 ${\rm I\hspace{-.1em}I}$

(1) $f(x) = \frac{x^3}{3} + x^2 + \frac{4}{3}$ $\emptyset \ge 3$,

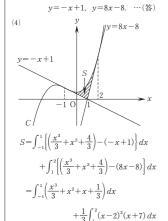
 $f'(x) = x^2 + 2x$ = x(x+2)

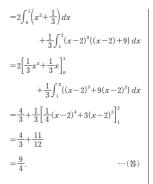
であるから、f(x) の増減は次のようになる.

x		-2		0	
f'(x)	+	0	-	0	+
f(x)	7	8/3	>	$\frac{4}{3}$	7

よって、求める極値は、

$$\begin{cases} 極大値: f(-2) = \frac{8}{3}, \\ & \cdots (答) \end{cases}$$
 極小値: $f(0) = \frac{3}{4}$.


…(答)


(2) C上の点 (t, f(t)) における接線の方程式は、

$$\begin{split} y &= f'(t)(x-t) + f(t) \\ &= (t^2 + 2t)(x-t) + \frac{t^3}{3} + t^2 + \frac{4}{3} \\ &= (t^2 + 2t)x - \frac{2}{3}t^3 - t^2 + \frac{4}{3}. \\ &\qquad \cdots \text{(\frac{4\pi}{5})} \quad \cdots \text{(\frac{1}{5})} \quad \cdots \text{(\frac{1}{5})} \end{split}$$

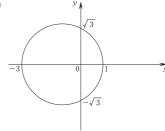
(3) ①が点(1,0)を通る条件は,

$$0=(t^2+2t)\cdot 1-\frac{2}{3}t^3-t^2+\frac{4}{3}$$

$$t^3-3t-2=0$$

$$(t+1)^2(t-2)=0$$

$$t=-1,\ 2.$$
 よって、求める接線の方程式は、



【理系型/物理 I】

問 1

- (1) (1, 0), (-3, 0)
- (2) $(0, \sqrt{3}), (0, -\sqrt{3})$
- (3) $(x+1)^2 + y^2 = 4$

(4)

問 2

- (1) eV
- (2) $\sqrt{2meV}$
- (3) $\frac{h}{\sqrt{2meV}}$
- (4) (c)
- (5) (i) 正しい (ii) 誤り (iii) 誤り
- (6) $\frac{\sqrt{2}}{2}$ 倍

【理系型∕物理Ⅱ】

問1 求める速さを v' とする。壁 PQ に平行な速度成分は変化しないので、

$$v\cos 60^{\circ} = v'\cos 45^{\circ}$$
 \therefore $v' = \frac{\sqrt{2}}{2}v$

答 $\frac{\sqrt{2}}{2}v$

問2 反発係数をeとすると,

$$e = \frac{v'\sin 45^{\circ}}{v\sin 60^{\circ}} = \frac{\sqrt{3}}{3}$$

答 $\frac{\sqrt{3}}{3}$

問3 衝突後の, 壁 QR に平行な速度成分の大きさを v₁ とする。

$$v_1 = v' \cos 45^\circ$$
 \therefore $v_1 = \frac{1}{2}v$

衝突後の,壁 QR に垂直な速度成分の大きさを v2 とする。

$$v_2 = v' \sin 45^\circ \times e = \frac{\sqrt{3}}{6}v$$

衝突後の速さ v" は,

$$v''\!=\!\!\sqrt{{{v_1}^2\!+\!{v_2}^2}}\!=\!\frac{\sqrt{3}}{3}v$$

答 $\frac{\sqrt{3}}{3}v$

問4 あらい面をすべった距離を d とする。三角形の相似条件より、

$$d:\frac{L}{\sqrt{3}}=v'':v_1\qquad \therefore\quad d=\frac{2}{3}L$$

等加速度運動なので,

$$0^2\!-\!v''^2\!=\!2\!\times\!(-\mu'g)\!\times\!d\qquad \therefore \quad v\!=\!2\!\sqrt{\mu'gL}$$

答 2√*µ′gL*

理科・情報 全学統一入試

【理系型/化学 I 】

問 1

- (1) 過冷却
- (2) ウ
- (3) B
- (4) 溶媒の凝固によって溶液の濃度が大きくなるため、溶液の凝固点が徐々に低くなるから。
- (5) 1.8×10^{2}
- (6) −0.222 ℃

問 2

- (1) ア 単量体(モノマー) イ 重合体(ポリマー) ウ 重合
- (2) 1.5×10⁴
- (3) X1 ポリエチレンテレフタラート X2 ポリ塩化ビニル X3 ポリプロピレン X4 ポリスチレン
- $(5)\quad Z1,\ Z2,\ Z3,\ Z4,\ Z5,\ Z6$
- (6) プラスチックを分解して、単量体や分子量の小さい化合物にし、これを原料にして再利用 すること。
- (7) マテリアルリサイクル
- (8) PVC は塩素原子をもつため、燃焼によって有毒な塩化水素が発生するので、発生したガスに触れたり吸い込まないようにする。

【理系型∕化学Ⅱ】

理科・情報 全学統一入試

- 問1 原子核の正電荷が大きくなるため、原子核が価電子を引きつける力は強くなる。
- **間2** 最外殻がより外側の電子殻になり、原子核と価電子との距離が長くなるため、原子核が 価電子を引きつける力は弱くなる。
- 問 3 Na $_2$ O, MgO, Al $_2$ O $_3$, SiO $_2$, P $_4$ O $_{10}$, SO $_3$, Cl $_2$ O $_7$
- 問4 塩基性酸化物:Na₂O, MgO

酸性酸化物: SiO₂, P₄O₁₀, SO₃, Cl₂O₇

- 問5 $4 \text{FeS}_2 + 11 \text{O}_2 \longrightarrow 8 \text{SO}_2 + 2 \text{Fe}_2 \text{O}_3$
- 問6 FeS₂=119.8, SO₂=64.0 より,

 $\frac{3.0\!\times\!10^2}{119.8}\!\times\!2\!\times\!64.0\!=\!3.20\!\times\!10^2\,(\mathrm{kg})$

答 3.2×10² kg

問7 SO₂=64.0 より, SO₂ から得られる H₂SO₄ の物質量は,

$$\frac{3.20 \times 10^{2} \times 10^{3}}{64.0} = 5.00 \times 10^{3} \text{ (mol)}$$

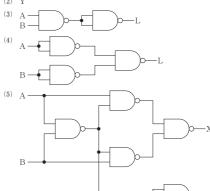
必要な濃度 80 %の希硫酸を V[L] とすると、

 $18.3 \times V = 14.1 \times V + 5.00 \times 10^{3}$

 $V = 1.19 \times 10^3 \text{ (L)}$

答 1.2×10³ L

【理系型/情報I】


問 1

(2) キ (b) ク (c)

問 2

1)	入	力	出力		
	А	В	X	Y	
	0	0	0	0	
	0	1	1	0	
	1	0	1	0	
	1	1	0	1	

(2) Y

(6)		入力		出力		
	A B		С	X	Y	
	0	0	0	0	0	
	0	0	1	1	0	
	0	1	0	1	0	
	0	1	1	0	1	
	1	0	0	1	0	
	1	0	1	0	1	
	1	1	0	0	1	
	1	1	1	1	1	

【理系型/情報Ⅱ】

問1 (n=2): 出力なし (n=3): 出力なし (n=4): 2 (n=5): 出力なし

(n=6):2 3 (n=7):出力なし (n=8):2 4

問2 n の約数のうち、1 と n を除いたもの

問3 0

問4 (n=2):素数 (n=3):素数 (n=4):出力なし (n=5):素数

(n=6): 出力なし (n=7): 素数 (n=8): 出力なし

問 5 (n=13):11 回 (n=35):33 回 問 6 (n=13):11 回 (n=35):4 回

問7 (工夫) $\lceil i \, \emph{in} \, n-1 \, \emph{U}$ 下」の部分を $\lceil i \, \emph{in} \, \sqrt{n} \, \emph{U}$ 下」にする。

(理由) n が約数をもつ場合、 \sqrt{n} 以下の約数が必ず存在する。したがって、素数の判定をする場合は、i が 2 から \sqrt{n} の値をとる範囲を調べればよく、条件として与える i の値の範囲を狭くすることで繰り返しの回数が減ることを期待できるため。

国語 全学統一入試

【文系型/現代文】

問題番号	設問番号	正解	問題番号	設問番号	正解
	A 1	エ		A 27	1
	A 2	1		A 28	オ
	A 3	ウ		A 29	イ
	A 4	ア		A 30	ウ
	A 5	エ		A 31	エ
	A 6	ウ	Ξ	A 32	ア
_	A 7	ウ		A 33	オ
	A 8	エ		A 34	ア
	A 9	ア		A 35	ウ
	A 10	エ		A 36	エ
	A 11	イ		A 37	エ
	A 12	ウ ウ ウ イ	\setminus		
	A 13	ウ			
	A 14	ウ			
	A 15	イ			
	A 16	エ	\		
	A 17	ウ			
	A 18	イ			
	A 19	1			
_	A 20	エ ウ			
_	A 21			\	\
	A 22	ア			
	A 23	I			
	A 24	オ			
	A 25	ア			
	A 26	ウ			

国語 全学統一入試 【文系型/古文】

問題番号	設問番号	正解
	A 49	ウ
	A 50	ア
	A 51	ア
	A 52	Н
四四	A 53	イ
	A 54	Н
	A 55	ア
	A 56	イ
	A 57	ウ

【文系型/漢文】

問題番号	設問番号	正解
	A 65	エ
	A 66	ア
	A 67	ア
	A 68	1
五	A 69	イ
	A 70	ウ
	A 71	エ
	A 72	ウ
	A 73	エ

【理系型/数学】

Ι	(1)	ア	4	1	66
	(2)	ゥ	1	I	-3
	(3)	オ	$\frac{\pi}{6}$, $\frac{5}{6}\pi$	カ	$-1 \le a \le 2$
	(4)	+	12	ク	0

(1) $f(x) = e^{4x} - (1 + e^{10})e^{2x} + e^{10}$. $e^{2x}=t$. ···① ①より.

$$f(x) = t^2 - (1 + e^{10})t + e^{10}$$
. ...(2)

(2) ①より、

$$\frac{dt}{dx} = 2e^{2x}$$
. ···(答)

(3) ①より t>0 であり、②より、 $g(t) = t^2 - (1 + e^{10})t + e^{10}$ $=(t-1)(t-e^{10}).$ よって、g(t) < 0 とすると、 $(t-1)(t-e^{10})<0.$ $1 < t < e^{10}$. これはt>0を満たすから、求めるt

の範囲は $1 < t < e^{10}$. またこれより、f(x)<0となるxの条

$$e^{0} < e^{2x} < e^{10}$$
.
底 e は 1 よ 0 大き v から,

0 < 2x < 10

0 < x < 5

…(答)

(4) ①のとき、xとtの対応は次のように

$$\begin{array}{c|ccc} x & 0 & \longrightarrow & 5 \\ \hline t & 1 & \longrightarrow & e^{10} \end{array}$$

また, (2)より

 $dt = 2e^{2x} dx$

であるから,

$$\int_{0}^{5} f(x)e^{2x} dx$$

$$= \int_{1}^{e^{10}} g(t) \cdot \frac{1}{2} dt$$

$$= \frac{1}{2} \int_{1}^{e^{10}} (t-1)(t-e^{10}) dt$$

$$= \frac{1}{2} \cdot \left(-\frac{1}{6}\right) (e^{10}-1)^{3}$$

$$= -\frac{1}{12} (e^{10}-1)^{3}. \qquad \cdots (\stackrel{\text{(4)}}{\Rightarrow})$$

るから、(4)の結果も用いて、

$$\int_0^5 |f(x)| e^{2x} dx$$

$$= -\int_0^5 f(x) e^{2x} dx$$

外国語 全学統一入試

$=\frac{1}{12}(e^{10}-1)^3$(答)

(1) $\overrightarrow{AX} = t\overrightarrow{AB} \downarrow \emptyset$

$$\overrightarrow{OX} = \overrightarrow{OA} + t\overrightarrow{AB}$$

$$= \overrightarrow{a} + t(\overrightarrow{b} - \overrightarrow{a})$$

$$= (1-t)\overrightarrow{a} + t\overrightarrow{b}. \qquad \cdots (答)$$

(2) $\overrightarrow{PW} = s \overrightarrow{PQ} \downarrow b$,

$$\overrightarrow{OW} = \overrightarrow{OP} + s\overrightarrow{PQ}$$

= $(1-s)\overrightarrow{OP} + s\overrightarrow{OQ}$
= $(1-s)\overrightarrow{pa} + 2s\overrightarrow{pb}$. …(答)

(3) $\overrightarrow{a} \neq \overrightarrow{0}$, $\overrightarrow{b} \neq \overrightarrow{0}$, $\overrightarrow{a} \times \overrightarrow{b}$ respectively. (1), (2)より OX=OW のとき.

$$\begin{cases} 1 - t = (1 - s)p, \\ t = 2sp. \end{cases}$$

$$\begin{cases} s = \frac{1}{p} - 1. \\ t = 2(1 - p). \quad \cdots \text{ } 0 \quad \cdots \text{ } (\text{\ref{eq:partial_position}}) \end{cases}$$

よって、①を(1)へ代入し、 $\overrightarrow{OX} = (2p-1)\overrightarrow{a} + 2(1-p)\overrightarrow{b}$. ···(答)

(4) Y は直線 QR 上より $\overrightarrow{OY} = \overrightarrow{OQ} + k\overrightarrow{QR}$

$$=(1-b)\overrightarrow{OO}+b\overrightarrow{OI}$$

$$=(1-k)\overrightarrow{OQ}+k\overrightarrow{OR}$$

$$=2p(1-k)\overrightarrow{b}+4pk\overrightarrow{c}$$
. ...②

また Y は直線 BC 上より、 $\overrightarrow{OY} = \overrightarrow{OB} + \ell \overrightarrow{BC}$

 $=(1-\ell)\vec{b}+\ell\vec{c}$(3)

 $\overrightarrow{b} \neq \overrightarrow{0}, \overrightarrow{c} \neq \overrightarrow{0}, \overrightarrow{b} \times \overrightarrow{c}$ であるから,

 $[2p(1-k)=1-\ell,$

2, 3より

$$\begin{cases} 4pk = \ell. \\ k = \frac{1}{2p} - 1. \\ \ell = 2 - 4p. \end{cases}$$

よって、③より、

 $\overrightarrow{OY} = (4p-1)\overrightarrow{b} + 2(1-2p)\overrightarrow{c}$. ···(答)

(5) XY

 $=\overrightarrow{\mathrm{OY}}-\overrightarrow{\mathrm{OX}}$

 $= (1-2p)\overrightarrow{a} - 3(1-2p)\overrightarrow{b} + 2(1-2p)\overrightarrow{c}$

 $=(1-2p)(\overrightarrow{a}-3\overrightarrow{b}+2\overrightarrow{c}).$

 $=\overrightarrow{OZ}-\overrightarrow{OX}$

 $=\frac{2}{3}(1-p)\overrightarrow{a}-2(1-p)\overrightarrow{b}+\frac{4}{3}(1-p)\overrightarrow{c}$

 $=\frac{2}{3}(1-p)(\overrightarrow{a}-3\overrightarrow{b}+2\overrightarrow{c}).$

よって,

 $\frac{\overrightarrow{XY}}{1-2p} = \frac{\overrightarrow{XZ}}{\frac{2}{3}(1-p)} (= \overrightarrow{a} - 3\overrightarrow{b} + 2\overrightarrow{c}).$

 $\overrightarrow{XZ} = \frac{2(1-p)}{3(1-2p)} \overrightarrow{XY}$

より、Zと(3)のXと(4)のYの3点は一 直線上にある. (証明終り)

【文系型・理系型/英語】

問題 番号	設問番号	正解	問題 番号	設問番号	正解	問題 番号	設問 番号	正解
	1	D		28	Α		47	В
	2	С		29	С		48	С
	3	D		30	В		49	Α
	4	Α		31	D		50	Α
	5	В		32	Α	AW	51	D
	6	Α		33	Α	H IV	52	D
	7	D		34	С		53	C
	8	Α		35	D		54	D
	9	D		36	В		55	В
ΑI	10	В	AШ	37	Α		56	С
A 1	11	С		38	Α		57	D
	12	В		39	С		58	В
	13	Α		40	D		59	В
	14	С		41	Α		60	С
	15	В		42	В	ΑV	61	Α
	16	Α		43	С	AV	62	В
	17	D		44	В		63	Α
	18	Α		45	D		64	В
	19	С		46	Α		65	D
	20	Α					66	В
	21	Α					67	С
	22	С					68	D
	23	В				ΑVI	69	D
ΑII	24	С					70	Α
	25	В		`			71	В
	26	В						
	27	С						